日本を取りまくエネルギーの今を伝えるべく、Concent編集部きっての好奇心旺盛なCon(コン)ちゃんが突撃取材! 第13回は、前回に続いて北海道にある「幌延深地層研究センター」からお届け。地下350mにある研究施設の内部に、Conちゃんが突入します!
Conちゃん、地下350メートルの坑道に入る!
北海道・幌延深地層研究センターにやってきたConちゃん。
前回、地上の施設で地層処分の方法や安全性などを教えてもらったので、今回は実際に研究が行われる現場である地下の坑道に入ることに。
早野「この建物の中に、立坑(たてこう)と呼ばれる深い縦穴が掘られています。深さは365メートル。これが敷地内に全部で3本あって、それらをつなぐように140、250、350メートルの深さに調査坑道という横穴が掘られています」
早野「ここからエレベーターで地下まで一直線。毎分100メートルで降りていきます」
早野「地層処分システムの性能確認や地質環境の研究を行っています。先ほど地上で見てもらったガラス固化体(高レベル放射性廃棄物)を処分するための『人工バリア』であるオーバーパックと緩衝材を実際に設置して、実際の地下深くではどういう状態になるのか、どのような埋め方がいいのかなどを調べる試験を行っているんだよ。また、どのような岩石が分布しているのか、地下水がどう流れるのかといった地質環境を調べることも行っています」
早野「地下350メートルの調査坑道には、試験坑道という研究用の短かめな横穴が5カ所あります。ここの総延長は757.1メートル。八の字のようにぐるッと回れる構造になっているんです」
早野「立坑に向かって地下水が集まるよう、ちょっとずつ傾けているんです。ちなみに坑道の壁、白いですよね? これは本来の地層ではなくて、コンクリートで覆っているから。でも、本来の地層も見られるように“窓”を開けています」
早野「通称『幌延の窓』。これが地層のオリジナルの色です。坑道周辺には、声問(コエトイ)層と稚内層という2つの地層が広がっていて、地下350メートルの周りは稚内層ですね」
早野「どちらの地層も海の中で藻の仲間である珪藻(ケイソウ)の殻が積もっていって、長い年月をかけて固まっていったものなのですが、硬さが異なっています。珪藻(ケイソウ)はガラスと同じ成分なのですが、声問層より深いところにある稚内層の珪藻(ケイソウ)は結晶化が進み、稚内層の方が硬い岩石になっています」
Conちゃん、地下の研究結果に震える!
広くて深い地下350メートルの坑道にワクワクしてきたConちゃん。
ここで、どんな試験が行われて、なにがわかったんだろう。
早野「このコンクリートの壁の向こうに実物の人工バリアを埋めて、状態の変化を確かめたんです。実際に地層処分するガラス固化体は入れられないので、実物を再現するために電熱ヒーターで表面温度を現在は50℃(その前は90℃)にして試験しています」
早野「もともとこの壁の奥に水平な坑道とその床に人工バリアを置く縦穴があって、そこに人工バリアが埋められています。約5年の間モニタリングしてきたんですよ」
早野「地下水を注入して、人工バリアの温度や、水分量などの変化を見ているんです。中にセンサーや計器が入っていて、ケーブルをつないでこっちの小屋にデータを送っています」
早野「試験を始める前にコンピューターでシミュレーションした初期モデルというものがあって、簡単に言うと、それの答え合わせをしているんです。その答えが、まさに今集めているデータ」
早野「シミュレーションと合っているかどうかを確認して、合わないのなら合わない理由を探る。そうしてモデルを改良していくと、ノウハウになって実際に活用できるようになるんです」
早野「これは『オーバーパック腐食試験』をした穴です。金属は土に埋めると腐食するんですが、人工バリアの一部のオーバーパックも金属製。なので、実際の地層に埋めて腐食速度を測ったんです」
早野「少なくとも1000年間もつように設計されているオーバーパックが、本当に1000年間もつのか。一年間でどれくらい腐食していくのかを計測したら、結果として事前の予想よりもずっと遅かった」
早野「研究結果からわかっているのは、1000年閉じ込めるのに必要なオーバーパックの最大の厚さは12.1センチメートル。今考えられている19.0センチメートルの厚さであれば、約1万7000年の間は閉じ込められる可能性があると予想されています(※)。十分な安全性を優先し、19.0センチメートルの厚さを設定した設計の正しさも、ここの試験で確認されたんです」
※原子力発電環境整備機構(NUMO)『包括的技術報告書』(2018年11月)より
早野「腐食の計測を終え、2018年に取り出しました。今は次に進み、オーバーパックにどんなさびの成分が付いているのかなど詳しい分析を進めています」
早野「他にも、人工バリアのいろいろな埋め方についても研究開発をしています。考えられている施工方法が本当にうまくいくのか、確かめているんですよ」
Conちゃん、幌延の地下にロマンを感じる!
人工バリアが想像以上だったことに驚いたConちゃん。
実際に地下深くの地層を使うと、わかることはたくさんあるようだ。
早野「2020年1月に、研究開発期間を2028年度まで延長することを地元に受け入れてもらったんです。私たちは、それまでの9年間で計画したことを実直に進めていくんです」
早野「“地上の施設”(前編)でも聞いたかと思うけれど、地元の北海道、幌延町との約束で、研究開発が完了したら、ここは埋め戻すんです」
早野「放射性廃棄物を持ち込むことや使用することはしない。地層処分を行う実施主体に譲渡や貸し出すこともしない。研究開発が終了したら地上施設を閉鎖して、地下施設は埋め戻す。これが大前提。なので、絶対にないんです」
早野「今後は、これまでの研究開発をさらに発展させて、技術の信頼性を高めていくんですよ」
早野「大きくは①実際の地質環境における人工バリアの適用性確認、②処分概念オプションの実証、③地殻変動に対する堆積岩の緩衝能力の検証、という3つの課題に取り組んでいきます」
早野「……簡単に言うと、①は人工バリアの内部の熱が下がるとどうなるのかを観測したり、人工バリアの解体作業を行ったり……」
早野「②は坑道の閉鎖についてさまざまな選択肢を検討したり、100℃以上の状態を想定して人工バリアの性能を確認したり……」
早野「③は、大きな断層による地震動の影響に対して、堆積岩が自ら元の状態に回復する力について確認する試験を行ったり……」
早野「さまざまな試験を組み合わせて、実際の地下環境での振る舞いを調べて、地層処分の事業に使うことができる新しい技術や調査方法を整備できたときが、一つのゴールでしょうか」
早野「それと、地下深くの基礎データを集めることも大事。平地の地下深いところにあるこのような施設は、日本では少ないと思います。そのため、ここで蓄えられたデータも日本の財産であり、これは大きな成果だと思います」
早野「そもそも、ここの坑道は一般的な道路トンネルと同じ土木の技術により掘削されています。ここで技術やデータが蓄積されれば、将来、日本で行われているトンネル工事や地下施設の建設に役立てることができるかもしれません。『地下空間は、宇宙、海洋に続く第3のフロンティア』とも呼ばれていますが、他にも地下にかかわる分野で、掘る、埋める、建設する技術に共通する部分があれば、使える知見はたくさんあると思いますよ」
実際に地下深くで研究開発される地層処分は、安全が第一に考えられ、改良し続けられている未来のための技術だった。
しかもこの技術を高めていくと、地下に眠る未知の可能性も掘り起こせるかもしれない。
地層処分の不安感をぬぐってくれた幌延深地層研究センターに、信頼とロマンを感じたConちゃんでした。
取材協力:幌延深地層研究センター
日本原子力研究開発機構が運営する研究施設。350メートルにある調査坑道を有し、高レベル放射性廃棄物の地層処分技術に関する研究開発を行っている。地層処分や研究開発内容が学べる「ゆめ地創館」は一般見学可能(月曜(祝日の場合は水曜日)、年末年始は休館)。地下施設の状況は、毎週金曜にホームページで写真配信されている。
https://www.jaea.go.jp/04/horonobe/
★さらに「地層処分の世界の取り組み」について知りたい方はこちら!